Search results
Results from the WOW.Com Content Network
An integer overflow can cause the value to wrap and become negative, which violates the program's assumption and may lead to unexpected behavior (for example, 8-bit integer addition of 127 + 1 results in −128, a two's complement of 128).
This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, [1] but also, as a primary function, to allow the computation of double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables.
The existing 64- and 128-bit formats follow this rule, but the 16- and 32-bit formats have more exponent bits (5 and 8 respectively) than this formula would provide (3 and 7 respectively). As with IEEE 754-1985, the biased-exponent field is filled with all 1 bits to indicate either infinity (trailing significand field = 0) or a NaN (trailing ...
Some architectures may be configured to automatically generate an exception on an operation resulting in overflow. An example, suppose we add 127 and 127 using 8-bit registers. 127+127 is 254, but using 8-bit arithmetic the result would be 1111 1110 binary, which is the two's complement encoding of −2, a negative number. A negative sum of ...
Floating-point numbers in IEEE 754 format consist of three fields: a sign bit, a biased exponent, and a fraction. The following example illustrates the meaning of each. The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32). (Subscripts indicate the number base.)
Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.
On 5 January 1975, the 12-bit field that had been used for dates in the TOPS-10 operating system for DEC PDP-10 computers overflowed, in a bug known as "DATE75". The field value was calculated by taking the number of years since 1964, multiplying by 12, adding the number of months since January, multiplying by 31, and adding the number of days since the start of the month; putting 2 12 − 1 ...
The Motorola 6888x math coprocessors and the Motorola 68040 and 68060 processors also support a 64-bit significand extended-precision format (similar to the Intel format, although padded to a 96-bit format with 16 unused bits inserted between the exponent and significand fields, and values with exponent zero and bit 63 one are normalized values ...