Search results
Results from the WOW.Com Content Network
Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.
This 128-bit quadruple precision is designed not only for applications requiring results in higher than double precision, [1] but also, as a primary function, to allow the computation of double precision results more reliably and accurately by minimising overflow and round-off errors in intermediate calculations and scratch variables.
Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.
An example, suppose we add 127 and 127 using 8-bit registers. 127+127 is 254, but using 8-bit arithmetic the result would be 1111 1110 binary, which is the two's complement encoding of −2, a negative number. A negative sum of positive operands (or vice versa) is an overflow.
On 5 January 1975, the 12-bit field that had been used for dates in the TOPS-10 operating system for DEC PDP-10 computers overflowed, in a bug known as "DATE75". The field value was calculated by taking the number of years since 1964, multiplying by 12, adding the number of months since January, multiplying by 31, and adding the number of days since the start of the month; putting 2 12 − 1 ...
32, 64, or 128 bits see Jenkins hash function: CityHash [4] 32, 64, 128, or 256 bits FarmHash [5] 32, 64 or 128 bits MetroHash [6] 64 or 128 bits numeric hash (nhash) [7] variable division/modulo xxHash [8] 32, 64 or 128 bits product/rotation t1ha (Fast Positive Hash) [9] 64 or 128 bits product/rotation/XOR/add GxHash [10] 32, 64 or 128 bits ...
The binary interchange formats have the "half precision" (16-bit storage format) and "quad precision" (128-bit format) added, together with generalized formulae for some wider formats; the basic formats have 32-bit, 64-bit, and 128-bit encodings. Three new decimal formats are described, matching the lengths of the 32–128-bit binary formats.
The Motorola 6888x math coprocessors and the Motorola 68040 and 68060 processors also support a 64-bit significand extended-precision format (similar to the Intel format, although padded to a 96-bit format with 16 unused bits inserted between the exponent and significand fields, and values with exponent zero and bit 63 one are normalized values ...