Search results
Results from the WOW.Com Content Network
Electric charge is a conserved property: the net charge of an isolated system, the quantity of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms ...
The surface is the only location where a net electric charge can exist. [4]: p.754 This establishes the principle that electrostatic charges on conductive objects reside on the surface of the object. [3] [7] External electric fields induce surface charges on metal objects that exactly cancel the field within. [3]
where = is the distance of each charge from the test charge, which situated at the point , and () is the electric potential that would be at if the test charge were not present. If only two charges are present, the potential energy is Q 1 Q 2 / ( 4 π ε 0 r ) {\displaystyle Q_{1}Q_{2}/(4\pi \varepsilon _{0}r)} .
This charge is sometimes called the Noether charge. Thus, for example, the electric charge is the generator of the U(1) symmetry of electromagnetism. The conserved current is the electric current. In the case of local, dynamical symmetries, associated with every charge is a gauge field; when quantized, the gauge field becomes a gauge boson. The ...
The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest slope of potential, and ...
In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. [1] Some composite particles like protons are charged particles. An ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons are also charged particles.
The charges must have a spherically symmetric distribution (e.g. be point charges, or a charged metal sphere). The charges must not overlap (e.g. they must be distinct point charges). The charges must be stationary with respect to a nonaccelerating frame of reference. The last of these is known as the electrostatic approximation. When movement ...
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1 / 2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)