Search results
Results from the WOW.Com Content Network
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.
The history of thermodynamics is fundamentally interwoven with the history of physics and the history of chemistry, and ultimately dates back to theories of heat in antiquity. The laws of thermodynamics are the result of progress made in this field over the nineteenth and early twentieth centuries.
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation.
The second was the 1933 book Modern Thermodynamics by the methods of Willard Gibbs written by E. A. Guggenheim. In this manner, Lewis, Randall, and Guggenheim are considered as the founders of modern chemical thermodynamics because of the major contribution of these two books in unifying the application of thermodynamics to chemistry. [1]
The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.
The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes.The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter.
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...