Search results
Results from the WOW.Com Content Network
a depth-first search starting at A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously-visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G.
If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]
Maze generation animation using Wilson's algorithm (gray represents an ongoing random walk). Once built the maze is solved using depth first search. All the above algorithms have biases of various sorts: depth-first search is biased toward long corridors, while Kruskal's/Prim's algorithms are biased toward many short dead ends.
The index variable is the depth-first search node number counter. S is the node stack, which starts out empty and stores the history of nodes explored but not yet committed to a strongly connected component. This is not the normal depth-first search stack, as nodes are not popped as the search returns up the tree; they are only popped when an ...
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
Knuth showed that Algorithm X can be implemented efficiently on a computer using dancing links in a process Knuth calls "DLX". DLX uses the matrix representation of the exact cover problem, implemented as doubly linked lists of the 1s of the matrix: each 1 element has a link to the next 1 above, below, to the left, and to the right of itself.
The programming languages Forth, Factor, RPL, PostScript, BibTeX style design language [2] and many assembly languages fit this paradigm. Stack-based algorithms manipulate data by popping data from and pushing data to the stack. Operators govern how the stack manipulates data. To emphasize the effect of a statement, a comment is often used ...