Search results
Results from the WOW.Com Content Network
If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]
The index variable is the depth-first search node number counter. S is the node stack, which starts out empty and stores the history of nodes explored but not yet committed to a strongly connected component. This is not the normal depth-first search stack, as nodes are not popped as the search returns up the tree; they are only popped when an ...
As a tree is a self-referential (recursively defined) data structure, traversal can be defined by recursion or, more subtly, corecursion, in a natural and clear fashion; in these cases the deferred nodes are stored implicitly in the call stack. Depth-first search is easily implemented via a stack, including recursively (via the call stack ...
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]
a depth-first search starting at A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously-visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G.
Graph traversal is a subroutine in most graph algorithms. The goal of a graph traversal algorithm is to visit (and / or process) every node of a graph. Graph traversal algorithms, like breadth-first search and depth-first search, are analyzed using the von Neumann model, which assumes uniform memory access cost. This view neglects the fact ...
Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch. Although it has been established that approximately 5.96 x 10 26 final grids exist, a brute force algorithm can be a practical method to solve Sudoku puzzles.
Knuth showed that Algorithm X can be implemented efficiently on a computer using dancing links in a process Knuth calls "DLX". DLX uses the matrix representation of the exact cover problem, implemented as doubly linked lists of the 1s of the matrix: each 1 element has a link to the next 1 above, below, to the left, and to the right of itself.