Search results
Results from the WOW.Com Content Network
In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).
In mathematics, vector multiplication may refer to one of several operations between two (or more) vectors. It may concern any of the following articles: Dot product – also known as the "scalar product", a binary operation that takes two vectors and returns a scalar quantity. The dot product of two vectors can be defined as the product of the ...
These combine proper rotations with reflections (which invert orientation). ... rotates vectors in the plane of the first two coordinate axes 90°, rotates vectors in ...
This product of vectors a, and b produces two terms: a scalar part from the inner product and a bivector part from the wedge product. This bivector describes the plane perpendicular to what the cross product of the vectors would return. Bivectors in GA have some unusual properties compared to vectors.
A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...
For example, if two forces are acting upon an object in opposite directions, and one force is greater than the other, the forces can be replaced with a single force that is the difference of the greater and smaller force. That force is the net force. [1] When forces act upon an object, they change its acceleration.
In general, two dyadics can be added to get another dyadic, and multiplied by numbers to scale the dyadic. However, the product is not commutative; changing the order of the vectors results in a different dyadic. The formalism of dyadic algebra is an extension of vector algebra to include the dyadic product of vectors. The dyadic product is ...
The cross product of two vectors in dimensions with positive-definite quadratic form is closely related to their exterior product. Most instances of geometric algebras of interest have a nondegenerate quadratic form. If the quadratic form is fully degenerate, the inner product of any two vectors is always zero, and the geometric algebra is then ...