Search results
Results from the WOW.Com Content Network
The Apollo Command Module had a set of twelve hypergolic thrusters for attitude control, and directional reentry control similar to Gemini. The Apollo Service Module and Lunar Module each had a set of sixteen R-4D hypergolic thrusters, grouped into external clusters of four, to provide both translation and attitude control. The clusters were ...
Post-Apollo, modernized versions of the R-4D have been used in a variety of spacecraft, including the U.S. Navy's Leasat, Insat 1, Intelsat 6, Italsat, and BulgariaSat-1. [3] It has also been used on Japan 's H-II Transfer Vehicle and the European Automated Transfer Vehicle , both of which delivered cargo to the International Space Station . [ 4 ]
RCS quad containing four R-4D thrusters, as used on the Apollo Service Module. Four clusters of four reaction control system (RCS) thrusters (known as "quads") were installed around the upper section of the SM every 90°. The sixteen-thruster arrangement provided rotation and translation control in all three
R-4D (MMH/NTO) – 100 lbf (exact thrust depends on variant) hypergolic thruster, originally developed by Marquardt as RCS thrusters for the Apollo SM and LM. Currently used as secondary engines on the Orion European Service Module, and as apogee motors on various satellite buses. MR103G — 0.2 lb hydrazine monopropellant thruster
Some LESS designs used a single engine under the center, but many used multiple engines around the edge, typically based on the Apollo reaction control system (RCS) thrusters used for attitude control on the command and service module (CSM) and lunar module (LM). These had a thrust of around 100 pounds-force (440 N) each, so putting eight ...
The Apollo Command Module reentered with the center of mass offset from the center line; this caused the capsule to assume an angled attitude through the air, providing a sideways lift to be used for directional control. Rotational thrusters were used to steer the capsule under either automatic or manual control by changing the lift vector.
The final midcourse correction of the mission (MCC-7) or the corridor control burn, was a 21 s RCS thruster, slowing them down by 5.6 ft/s (1.7 m/s). Now all that was left for them to do was separate from the service module and assume the blunt-end-forward orientation. The CM's own RCS system was pressurized and the VHF radio link
The Apollo Lunar Module, used in the Moon landings, employed hypergolic fuels in both the descent and ascent rocket engines. The Apollo spacecraft used the same combination for the Service Propulsion System. Those spacecraft and the Space Shuttle (among others) used hypergolic propellants for their reaction control systems.