Search results
Results from the WOW.Com Content Network
Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
The area of the blue region converges on the Euler–Mascheroni constant, which is the 0th Stieltjes constant. In mathematics , the Stieltjes constants are the numbers γ k {\displaystyle \gamma _{k}} that occur in the Laurent series expansion of the Riemann zeta function :
In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: = = + + + + +.. The first terms of the series sum to approximately +, where is the natural logarithm and is the Euler–Mascheroni constant.
The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.
The Euler-Mascheroni constant emerges as the Improper Integral from zero to infinity at the integration on the product of negative Natural Logarithm and the Exponential reciprocal. But it is also the improper integral within the same limits on the Cardinalized Difference of the reciprocal of the Successor Function and the Exponential Reciprocal:
In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem , it is a very good approximation to the prime-counting function , which is defined as the number of prime numbers ...
Euler's product formula for the gamma function, combined with the functional equation and an identity for the Euler–Mascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16): [1]
where is the Euler–Mascheroni constant, exp(x) = e x is the exponential function, and Π denotes multiplication (capital pi notation). The integral representation, which may be deduced from the relation to the double gamma function, is