Search results
Results from the WOW.Com Content Network
The quadratic formula is exactly correct when performed using the idealized arithmetic of real numbers, but when approximate arithmetic is used instead, for example pen-and-paper arithmetic carried out to a fixed number of decimal places or the floating-point binary arithmetic available on computers, the limitations of the number representation ...
In fact, the discrimination method based on equation (3-1) works by approximating the map to the first order near the fixed point. When r = 1, this approximation does not hold, and stability or instability is determined by the quadratic (square) terms of the map, or in order words the second order perturbation.
This article describes periodic points of some complex quadratic maps.A map is a formula for computing a value of a variable based on its own previous value or values; a quadratic map is one that involves the previous value raised to the powers one and two; and a complex map is one in which the variable and the parameters are complex numbers.
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
The pair (V, Q) consisting of a finite-dimensional vector space V over K and a quadratic map Q from V to K is called a quadratic space, and B as defined here is the associated symmetric bilinear form of Q. The notion of a quadratic space is a coordinate-free version of the notion of quadratic form. Sometimes, Q is also called a quadratic form.
That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f ( x ) = x 2 is a parabola whose vertex is at the origin (0, 0).
Chaotic maps and iterated functions often generate fractals. Some fractals are studied as objects themselves, as sets rather than in terms of the maps that generate them. This is often because there are several different iterative procedures that generate the same fractal.
For b ∈ L, let F b be the map / (). Then F b ≠ F c if b ≠ c. Moreover, the K-linear transformations from L to K are exactly the maps of the form F b as b varies over the field L. When K is the prime subfield of L, the trace is called the absolute trace and otherwise it is a relative trace. [4]