Search results
Results from the WOW.Com Content Network
Interval scheduling is a class of problems in computer science, particularly in the area of algorithm design. The problems consider a set of tasks. The problems consider a set of tasks. Each task is represented by an interval describing the time in which it needs to be processed by some machine (or, equivalently, scheduled on some resource).
Longest-processing-time-first (LPT) is a greedy algorithm for job scheduling. The input to the algorithm is a set of jobs, each of which has a specific processing-time. There is also a number m specifying the number of machines that can process the jobs. The LPT algorithm works as follows:
But in complex situations it can easily fail to find the optimal scheduling. HEFT is essentially a greedy algorithm and incapable of making short-term sacrifices for long term benefits. Some improved algorithms based on HEFT look ahead to better estimate the quality of a scheduling decision can be used to trade run-time for scheduling performance.
Earliest deadline first (EDF) or least time to go is a dynamic priority scheduling algorithm used in real-time operating systems to place processes in a priority queue. Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue will be searched for the process closest to its deadline.
Unrelated-machines scheduling is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling . We need to schedule n jobs J 1 , J 2 , ..., J n on m different machines, such that a certain objective function is optimized (usually, the makespan should be minimized).
Similarly to the greedy colouring algorithm, DSatur colours the vertices of a graph one after another, expending a previously unused colour when needed. Once a new vertex has been coloured, the algorithm determines which of the remaining uncoloured vertices has the highest number of different colours in its neighbourhood and colours this vertex ...
The modified due date scheduling is a scheduling heuristic created in 1982 by Baker and Bertrand, [1] used to solve the NP-hard single machine total-weighted tardiness problem. This problem is centered around reducing the global tardiness of a list of tasks which are characterized by their processing time, due date and weight by re-ordering them.
List scheduling is a greedy algorithm for Identical-machines scheduling.The input to this algorithm is a list of jobs that should be executed on a set of m machines. The list is ordered in a fixed order, which can be determined e.g. by the priority of executing the jobs, or by their order of arrival.