Search results
Results from the WOW.Com Content Network
This was in a gold atom known to be 10 −10 metres or so in radius—a very surprising finding, as it implied a strong central charge less than 1/3000th of the diameter of the atom. The Rutherford model served to concentrate a great deal of the atom's charge and mass to a very small core, but did not attribute any structure to the remaining ...
The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [1]: 123 Thomson had discovered the electron through his work on cathode rays [2] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.
The current theoretical model of the atom involves a dense nucleus surrounded by a probabilistic "cloud" of electrons. Atomic theory is the scientific theory that matter is composed of particles called atoms. The definition of the word "atom" has changed over the years in response to scientific discoveries.
The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld .
II:106 Although Bohr's model would also rely on just the electron to explain the spectrum, he did not assume an electrodynamical model for the atom. The other important advance in the understanding of atomic spectra was the Rydberg–Ritz combination principle which related atomic spectral line frequencies to differences between 'terms ...
If the electron receives energy that is less than or greater than this value, it cannot jump from state 1 to state 2. Now, suppose we irradiate the atom with a broad-spectrum of light. Photons that reach the atom that have an energy of exactly E 2 − E 1 will be absorbed by the electron in state 1, and that electron will jump to state 2 ...
The atom is said to have undergone the process of ionization. If the electron absorbs a quantity of energy less than the binding energy, it will be transferred to an excited state. After a certain time, the electron in an excited state will "jump" (undergo a transition) to a lower state.
Throughout the 19th century evidence from chemistry and statistical mechanics accumulated that matter was composed of atoms. The structure of the atom was discussed, and by the end of the century the leading model [4]: 175 was the vortex theory of the atom, proposed by William Thomson (later Lord Kelvin) in 1867. [5]