enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    Since root locus is a graphical angle technique, root locus rules work the same in the z and s planes. The idea of a root locus can be applied to many systems where a single parameter K is varied. For example, it is useful to sweep any system parameter for which the exact value is uncertain in order to determine its behavior.

  3. Closed-loop pole - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_pole

    In root-locus design, the gain K is usually parameterized. Each point on the locus satisfies the angle condition and magnitude condition and corresponds to a different value of K. For negative feedback systems, the closed-loop poles move along the root-locus from the open-loop poles to the open-loop zeroes as the gain is increased

  4. Routh–Hurwitz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_stability...

    With the advent of computers, the criterion has become less widely used, as an alternative is to solve the polynomial numerically, obtaining approximations to the roots directly. The Routh test can be derived through the use of the Euclidean algorithm and Sturm's theorem in evaluating Cauchy indices. Hurwitz derived his conditions differently. [3]

  5. Hurwitz polynomial - Wikipedia

    en.wikipedia.org/wiki/Hurwitz_polynomial

    In mathematics, a Hurwitz polynomial (named after German mathematician Adolf Hurwitz) is a polynomial whose roots (zeros) are located in the left half-plane of the complex plane or on the imaginary axis, that is, the real part of every root is zero or negative. [1] Such a polynomial must have coefficients that are positive real numbers.

  6. Marginal stability - Wikipedia

    en.wikipedia.org/wiki/Marginal_stability

    Another example is a frictionless pendulum. A system with a pole at the origin is also marginally stable but in this case there will be no oscillation in the response as the imaginary part is also zero (jw = 0 means w = 0 rad/sec). An example of such a system is a mass on a surface with friction.

  7. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    Numerous tools exist for the analysis of the poles of a system. These include graphical systems like the root locus, Bode plots or the Nyquist plots. Mechanical changes can make equipment (and control systems) more stable. Sailors add ballast to improve the stability of ships.

  8. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    A small change of coefficients may induce a dramatic change of the roots, including the change of a real root into a complex root with a rather large imaginary part (see Wilkinson's polynomial). A consequence is that, for classical numeric root-finding algorithms , the problem of approximating the roots given the coefficients can be ill ...

  9. Snellius–Pothenot problem - Wikipedia

    en.wikipedia.org/wiki/Snellius–Pothenot_problem

    In trigonometry, the Snellius–Pothenot problem is a problem first described in the context of planar surveying.Given three known points A, B, C, an observer at an unknown point P observes that the line segment AC subtends an angle α and the segment CB subtends an angle β; the problem is to determine the position of the point P.