enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    Black-body radiation is the thermal electromagnetic radiation within, ... The formula E = σT 4 is given, ... depending on its surface and atmospheric properties ...

  3. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    The importance of the Lummer and Kurlbaum cavity radiation source was that it was an experimentally accessible source of black-body radiation, as distinct from radiation from a simply exposed incandescent solid body, which had been the nearest available experimental approximation to black-body radiation over a suitable range of temperatures.

  4. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The temperature of stars other than the Sun can be approximated using a similar means by treating the emitted energy as a black body radiation. [28] So: L = 4 π R 2 σ T 4 {\displaystyle L=4\pi R^{2}\sigma T^{4}} where L is the luminosity , σ is the Stefan–Boltzmann constant, R is the stellar radius and T is the effective temperature .

  5. Black body - Wikipedia

    en.wikipedia.org/wiki/Black_body

    A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is called black-body radiation. The name "black body" is given because it absorbs all colors of light.

  6. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    Blackbody radiation is a concept used to analyze thermal radiation in idealized systems. This model applies if a radiating object meets the physical characteristics of a black body in thermodynamic equilibrium. [4]: 278 Planck's law describes the spectrum of blackbody radiation, and relates the radiative heat flux from a body to its temperature.

  7. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    The surface of a perfect black body (with an emissivity of 1) emits thermal radiation at the rate of approximately 448 watts per square metre (W/m 2) at a room temperature of 25 °C (298 K; 77 °F). Objects have emissivities less than 1.0, and emit radiation at correspondingly lower rates.

  8. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Kirchhoff's original contribution to the physics of thermal radiation was his postulate of a perfect black body radiating and absorbing thermal radiation in an enclosure opaque to thermal radiation and with walls that absorb at all wavelengths. Kirchhoff's perfect black body absorbs all the radiation that falls upon it.

  9. Effective temperature - Wikipedia

    en.wikipedia.org/wiki/Effective_temperature

    The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.