Search results
Results from the WOW.Com Content Network
The theory of fractional integration for periodic functions (therefore including the "boundary condition" of repeating after a period) is given by the Weyl integral. It is defined on Fourier series , and requires the constant Fourier coefficient to vanish (thus, it applies to functions on the unit circle whose integrals evaluate to zero).
Because this is undefined when x = −b / a, the most general form of the antiderivative replaces the constant of integration with a locally constant function. [1] However, it is conventional to omit this from the notation.
This necessarily leads to the same result. Note that because () does not have a conventional definition when is not a rational number, irrational power functions are not well defined for negative bases. In addition, as rational powers of −1 with even denominators (in lowest terms) are not real numbers, these expressions are only real valued ...
Then | | = (()) +, where sgn(x) is the sign function, which takes the values −1, 0, 1 when x is respectively negative, zero or positive. This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral.
The main idea is to express an integral involving an integer parameter (e.g. power) of a function, represented by I n, in terms of an integral that involves a lower value of the parameter (lower power) of that function, for example I n-1 or I n-2. This makes the reduction formula a type of recurrence relation. In other words, the reduction ...
For some functions f straightforward integration is feasible, but where that is not true, the integral can sometimes be reduced to simpler form by changing the order of integration. The difficulty with this interchange is determining the change in description of the domain D. The method also is applicable to other multiple integrals. [1] [2]
If n is even, a complex number's nth roots, of which there are an even number, come in additive inverse pairs, so that if a number r 1 is one of the nth roots then r 2 = –r 1 is another. This is because raising the latter's coefficient –1 to the nth power for even n yields 1: that is, (–r 1) n = (–1) n × r 1 n = r 1 n.
In the polynomial + the only possible rational roots would have a numerator that divides 6 and a denominator that divides 1, limiting the possibilities to ±1, ±2, ±3, and ±6. Of these, 1, 2, and –3 equate the polynomial to zero, and hence are its rational roots (in fact these are its only roots since a cubic polynomial has only three roots).