enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    The symmetric group on a set of size n is the Galois group of the general polynomial of degree n and plays an important role in Galois theory. In invariant theory, the symmetric group acts on the variables of a multi-variate function, and the functions left invariant are the so-called symmetric functions.

  3. Representation theory of the symmetric group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids. [1] [2]

  4. Covering groups of the alternating and symmetric groups

    en.wikipedia.org/wiki/Covering_groups_of_the...

    The alternating group, symmetric group, and their double covers are related in this way, and have orthogonal representations and covering spin/pin representations in the corresponding diagram of orthogonal and spin/pin groups. Explicitly, S n acts on the n-dimensional space R n by permuting coordinates (in matrices, as permutation matrices).

  5. Young tableau - Wikipedia

    en.wikipedia.org/wiki/Young_tableau

    In mathematics, a Young tableau (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus.It provides a convenient way to describe the group representations of the symmetric and general linear groups and to study their properties.

  6. Automorphisms of the symmetric and alternating groups

    en.wikipedia.org/wiki/Automorphisms_of_the...

    For every symmetric group other than S 6, there is no other conjugacy class consisting of elements of order 2 that has the same number of elements as the class of transpositions. Or as follows: Each permutation of order two (called an involution ) is a product of k > 0 disjoint transpositions, so that it has cyclic structure 2 k 1 n −2 k .

  7. List of character tables for chemically important 3D point groups

    en.wikipedia.org/wiki/List_of_character_tables...

    For each non-linear group, the tables give the most standard notation of the finite group isomorphic to the point group, followed by the order of the group (number of invariant symmetry operations). The finite group notation used is: Z n: cyclic group of order n, D n: dihedral group isomorphic to the symmetry group of an n–sided regular ...

  8. Symmetry group - Wikipedia

    en.wikipedia.org/wiki/Symmetry_group

    In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object.

  9. Jucys–Murphy element - Wikipedia

    en.wikipedia.org/wiki/Jucys–Murphy_element

    Theorem : The center ([]) of the group algebra [] of the symmetric group is generated by the symmetric polynomials in the elements X k. Theorem ( Jucys ): Let t be a formal variable commuting with everything, then the following identity for polynomials in variable t with values in the group algebra C [ S n ] {\displaystyle \mathbb {C} [S_{n ...