enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one. [1]

  3. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  4. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    The rectangular region at the bottom of the body is the domain of integration, while the surface is the graph of the two-variable function to be integrated. In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).

  5. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.

  6. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...

  7. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    When more specific types of differentiation are necessary, such as in multivariate calculus or tensor analysis, other notations are common. For a function f of a single independent variable x, we can express the derivative using subscripts of the independent variable:

  8. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function at that point. Differential calculus and integral calculus are connected by the fundamental theorem of calculus. This states that differentiation is the reverse process to integration.

  9. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    For a twice differentiable function of a single variable, if the second derivative is always greater than or equal to zero for its entire domain then the function is convex. [20] Well-known examples of convex functions include the quadratic function x 2 {\displaystyle x^{2}} and the exponential function e x {\displaystyle e^{x}} .