enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cone (topology) - Wikipedia

    en.wikipedia.org/wiki/Cone_(topology)

    The cone over a closed interval I of the real line is a filled-in triangle (with one of the edges being I), otherwise known as a 2-simplex (see the final example). The cone over a polygon P is a pyramid with base P. The cone over a disk is the solid cone of classical geometry (hence the concept's name). The cone over a circle given by

  3. Cone (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Cone_(algebraic_geometry)

    In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme X , the relative Spec C = Spec X ⁡ R {\displaystyle C=\operatorname {Spec} _{X}R}

  4. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    An affine convex cone is the set resulting from applying an affine transformation to a convex cone. [8] A common example is translating a convex cone by a point p: p + C. Technically, such transformations can produce non-cones. For example, unless p = 0, p + C is not a linear cone. However, it is still called an affine convex cone.

  5. Tangent cone - Wikipedia

    en.wikipedia.org/wiki/Tangent_cone

    The definition of the tangent cone can be extended to abstract algebraic varieties, and even to general Noetherian schemes. Let X be an algebraic variety, x a point of X, and (O X,x, m) be the local ring of X at x. Then the tangent cone to X at x is the spectrum of the associated graded ring of O X,x with respect to the m-adic filtration:

  6. Normal cone - Wikipedia

    en.wikipedia.org/wiki/Normal_cone

    This can be much easier: for example, if X is regularly embedded in Y then its normal cone is a vector bundle, so we are reduced to the problem of finding the intersection product of a subscheme C W V of a vector bundle C X Y with the zero section X. However this intersection product is just given by applying the Gysin isomorphism to C W V.

  7. Nef line bundle - Wikipedia

    en.wikipedia.org/wiki/Nef_line_bundle

    The cone of curves is defined to be the convex cone of linear combinations of curves with nonnegative real coefficients in the real vector space () of 1-cycles modulo numerical equivalence. The vector spaces N 1 ( X ) {\displaystyle N^{1}(X)} and N 1 ( X ) {\displaystyle N_{1}(X)} are dual to each other by the intersection pairing, and the nef ...

  8. Ruled surface - Wikipedia

    en.wikipedia.org/wiki/Ruled_surface

    Ruled surfaces appear in the Enriques classification of projective complex surfaces, because every algebraic surface of Kodaira dimension is a ruled surface (or a projective plane, if one uses the restrictive definition of ruled surface). Every minimal projective ruled surface other than the projective plane is the projective bundle of a 2 ...

  9. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    The definition of a cone may be extended to higher dimensions; see convex cone. In this case, one says that a convex set C in the real vector space R n {\displaystyle \mathbb {R} ^{n}} is a cone (with apex at the origin) if for every vector x in C and every nonnegative real number a , the vector ax is in C . [ 2 ]