Search results
Results from the WOW.Com Content Network
A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...
A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the conservation of momentum. However, the definition of momentum is modified. Among the consequences of this is the fact that the more quickly a body moves, the harder it is to accelerate, and so, no matter how much force is applied, a body cannot ...
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.
A force arrow should lie along the line of force, but where along the line is irrelevant. A force on an extended rigid body is a sliding vector. non-rigid extended. The point of application of a force becomes crucial and has to be indicated on the diagram. A force on a non-rigid body is a bound vector. Some use the tail of the arrow to indicate ...
Diagram of the moment arm of a force F. The magnitude of the moment of a force at a point O, is equal to the perpendicular distance from O to the line of action of F, multiplied by the magnitude of the force: M = F · d, where F = the force applied d = the perpendicular distance from the axis to the line of action of the force. This ...
If the body is at rest (v = 0), i.e. in its center-of-momentum frame (p = 0), we have E = E 0 and m = m 0; thus the energy–momentum relation and both forms of the mass–energy relation (mentioned above) all become the same. A more general form of relation holds for general relativity.
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]