enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  3. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.

  4. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Two other well-known examples are when integration by parts is applied to a function expressed as a product of 1 and itself. This works if the derivative of the function is known, and the integral of this derivative times is also known. The first example is ⁡ (). We write this as:

  5. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:

  6. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    We start with a measure space (E, X, μ) where E is a set, X is a σ-algebra of subsets of E, and μ is a (non-negative) measure on E defined on the sets of X. For example, E can be Euclidean n-space R n or some Lebesgue measurable subset of it, X is the σ-algebra of all Lebesgue measurable subsets of E, and μ is the Lebesgue measure.

  7. Haar measure - Wikipedia

    en.wikipedia.org/wiki/Haar_measure

    If is a discrete group, then the compact subsets coincide with the finite subsets, and a (left and right invariant) Haar measure on is the counting measure. The Haar measure on the topological group ( R , + ) {\displaystyle (\mathbb {R} ,+)} that takes the value 1 {\displaystyle 1} on the interval [ 0 , 1 ] {\displaystyle [0,1]} is equal to the ...

  8. Indicator function - Wikipedia

    en.wikipedia.org/wiki/Indicator_function

    In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero.

  9. Improper integral - Wikipedia

    en.wikipedia.org/wiki/Improper_integral

    Sometimes integrals may have two singularities where they are improper. Consider, for example, the function 1/((x + 1) √ x) integrated from 0 to ∞ (shown right). At the lower bound of the integration domain, as x goes to 0 the function goes to ∞, and the upper bound is itself ∞, though the function goes to 0. Thus this is a doubly ...