enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law [1] of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force . [ 2 ]

  3. Electrostatics - Wikipedia

    en.wikipedia.org/wiki/Electrostatics

    Coulomb's law states that: [5] The magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them. The force is along the straight line joining them.

  4. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    A proton by definition carries a charge of exactly 1.602 176 634 × 10 −19 coulombs. This value is also defined as the elementary charge. No object can have a charge smaller than the elementary charge, and any amount of charge an object may carry is a multiple of the elementary charge.

  5. Relativistic electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Relativistic_electromagnetism

    Faraday's law of induction was suggestive to Einstein when he wrote in 1905 about the "reciprocal electrodynamic action of a magnet and a conductor". [ 15 ] Nevertheless, the aspiration, reflected in references for this article, is for an analytic geometry of spacetime and charges providing a deductive route to forces and currents in practice.

  6. Action at a distance - Wikipedia

    en.wikipedia.org/wiki/Action_at_a_distance

    Coulomb's law and Newton's law of universal gravitation are based on action at a distance. Historically, action at a distance was the earliest scientific model for gravity and electricity and it continues to be useful in many practical cases. In the 19th and 20th centuries, field models arose to explain these phenomena with more precision.

  7. Classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism

    What is plain from this definition, though, is that the unit of E is N/C (newtons per coulomb). This unit is equal to V/m (volts per meter); see below. In electrostatics, where charges are not moving, around a distribution of point charges, the forces determined from Coulomb's law may be summed. The result after dividing by q 0 is:

  8. Principle of locality - Wikipedia

    en.wikipedia.org/wiki/Principle_of_locality

    Coulomb's law of electric forces was initially also formulated as instantaneous action at a distance, but in 1880, James Clerk Maxwell showed that field equations – which obey locality – predict all of the phenomena of electromagnetism. [citation needed] These equations show that electromagnetic forces propagate at the speed of light.

  9. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    When talking about electrostatic potential energy, time-invariant electric fields are always assumed so, in this case, the electric field is conservative and Coulomb's law can be used. Using Coulomb's law, it is known that the electrostatic force F and the electric field E created by a discrete point charge Q are radially directed from Q.