Search results
Results from the WOW.Com Content Network
The radius ratio rule defines a critical radius ratio for different crystal structures, based on their coordination geometry. [1] The idea is that the anions and cations can be treated as incompressible spheres, meaning the crystal structure can be seen as a kind of unequal sphere packing .
An octahedron may then form with a radius ratio greater than or equal to 0.414, but as the ratio rises above 0.732, a cubic geometry becomes more stable. This explains why Na + in NaCl with a radius ratio of 0.55 has octahedral coordination, whereas Cs + in CsCl with a radius ratio of 0.93 has cubic coordination.
r B is the radius of the B cation. r O is the radius of the anion (usually oxygen). In an ideal cubic perovskite structure, the lattice parameter (i.e., length) of the unit cell (a) can be calculated using the following equation: [ 1 ]
Ionic radius, r ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice .
For more recent data on covalent radii see Covalent radius. Just as atomic units are given in terms of the atomic mass unit (approximately the proton mass), the physically appropriate unit of length here is the Bohr radius, which is the radius of a hydrogen atom. The Bohr radius is consequently known as the "atomic unit of length".
For all these radius ratios a compact packing is known that achieves the maximum possible packing fraction (above that of uniformly-sized discs) for mixtures of discs with that radius ratio. [9] All nine have ratio-specific packings denser than the uniform hexagonal packing, as do some radius ratios without compact packings. [10]
The relation between and are given by the following table, where the values for DRMS and 2DRMS (twice the distance root mean square) are specific to the Rayleigh distribution and are found numerically, while the CEP, R95 (95% radius) and R99.7 (99.7% radius) values are defined based on the 68–95–99.7 rule
In statistics, efficiency is a measure of quality of an estimator, of an experimental design, [1] or of a hypothesis testing procedure. [2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound .