Search results
Results from the WOW.Com Content Network
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it. Eigenvalues and eigenvectors give rise to many closely related mathematical concepts, and the prefix eigen-is applied liberally when naming them:
6. This implementation does not correctly account for the case in which one dimension is an independent subspace. For example, if given a diagonal matrix, the above implementation will never terminate, as none of the eigenvalues will change. Hence, in real implementations, extra logic must be added to account for this case.
Matrix pencils play an important role in numerical linear algebra.The problem of finding the eigenvalues of a pencil is called the generalized eigenvalue problem.The most popular algorithm for this task is the QZ algorithm, which is an implicit version of the QR algorithm to solve the eigenvalue problem = without inverting the matrix (which is impossible when is singular, or numerically ...
The eigenvalues of a matrix are always computable. We will now discuss how these difficulties manifest in the basic QR algorithm. This is illustrated in Figure 2. Recall that the ellipses represent positive-definite symmetric matrices. As the two eigenvalues of the input matrix approach each other, the input ellipse changes into a circle.
The eigenvalues and eigenvectors of are simply those of and , and it will almost always be faster to solve these two smaller problems than to solve the original problem all at once. This technique can be used to improve the efficiency of many eigenvalue algorithms, but it has special significance to divide-and-conquer.
This shows that the eigenvalues are 1, 2, 4 and 4, according to algebraic multiplicity. The eigenspace corresponding to the eigenvalue 1 can be found by solving the equation Av = λv. It is spanned by the column vector v = (−1, 1, 0, 0) T. Similarly, the eigenspace corresponding to the eigenvalue 2 is spanned by w = (1, −1, 0, 1) T.