enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The case of θ = 0, φ ≠ 0 is called a simple rotation, with two unit eigenvalues forming an axis plane, and a two-dimensional rotation orthogonal to the axis plane. Otherwise, there is no axis plane. The case of θ = φ is called an isoclinic rotation, having eigenvalues e ±iθ repeated twice, so every vector is rotated through an angle θ.

  3. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    Every rotation in 3D space has a fixed axis unchanged by rotation. The rotation is completely specified by specifying the axis of rotation and the angle of rotation about that axis. Without loss of generality, this axis may be chosen as the z-axis of a Cartesian coordinate system, allowing a simpler visualization of the rotation.

  4. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    Rotational symmetry of order n, also called n-fold rotational symmetry, or discrete rotational symmetry of the n th order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of ⁠ ⁠ (180°, 120°, 90°, 72°, 60°, 51 3 ⁄ 7 °, etc.) does not change the object. A "1-fold" symmetry is no symmetry (all ...

  5. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    In geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations , rotations , reflections , and glide reflections (see below § Classification ).

  6. Active and passive transformation - Wikipedia

    en.wikipedia.org/wiki/Active_and_passive...

    A rotation of the vector through an angle θ in counterclockwise direction is given by the rotation matrix: = (⁡ ⁡ ⁡ ⁡), which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.

  7. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    The triskelion has 3-fold rotational symmetry. Rotational symmetry is symmetry with respect to some or all rotations in m-dimensional Euclidean space. Rotations are direct isometries, which are isometries that preserve orientation. [17] Therefore, a symmetry group of rotational symmetry is a subgroup of the special Euclidean group E + (m).

  8. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotations define important classes of symmetry: rotational symmetry is an invariance with respect to a particular rotation. The circular symmetry is an invariance with respect to all rotation about the fixed axis. As was stated above, Euclidean rotations are applied to rigid body dynamics.

  9. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...