enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bertrand's ballot theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_ballot_theorem

    Then considering the case with p = a and q = b, the last vote counted is either for the first candidate with probability a/(a + b), or for the second with probability b/(a + b). So the probability of the first being ahead throughout the count to the penultimate vote counted (and also after the final vote) is:

  3. Category:Probability problems - Wikipedia

    en.wikipedia.org/wiki/Category:Probability_problems

    Pages in category "Probability problems" The following 31 pages are in this category, out of 31 total. This list may not reflect recent changes. B. Balls into bins ...

  4. List of probabilistic proofs of non-probabilistic theorems

    en.wikipedia.org/wiki/List_of_probabilistic...

    These non-probabilistic existence theorems follow from probabilistic results: (a) a number chosen at random (uniformly on (0,1)) is normal almost surely (which follows easily from the strong law of large numbers); (b) some probabilistic inequalities behind the strong law. The existence of a normal number follows from (a) immediately.

  5. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    The opposite or complement of an event A is the event [not A] (that is, the event of A not occurring), often denoted as ′,, ¯,,, or ; its probability is given by P(not A) = 1 − P(A). [31] As an example, the chance of not rolling a six on a six-sided die is 1 – (chance of rolling a six) = 1 − ⁠ 1 / 6 ⁠ = ⁠ 5 / 6 ⁠ .

  6. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  7. Buffon's needle problem - Wikipedia

    en.wikipedia.org/wiki/Buffon's_needle_problem

    The a needle lies across a line, while the b needle does not. In probability theory, Buffon's needle problem is a question first posed in the 18th century by Georges-Louis Leclerc, Comte de Buffon: [1] Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor.

  8. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    Graphs of probability P of not observing independent events each of probability p after n Bernoulli trials vs np for various p.Three examples are shown: Blue curve: Throwing a 6-sided die 6 times gives a 33.5% chance that 6 (or any other given number) never turns up; it can be observed that as n increases, the probability of a 1/n-chance event never appearing after n tries rapidly converges to 0.

  9. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    For example, the conditional probability that someone unwell (sick) is coughing might be 75%, in which case we would have that P(Cough) = 5% and P(Cough|Sick) = 75 %. Although there is a relationship between A and B in this example, such a relationship or dependence between A and B is not necessary, nor do they have to occur simultaneously.