Search results
Results from the WOW.Com Content Network
The five components of the climate system all interact. They are the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere. [1]: 1451 Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things).
The percentage going into each domain of the climate system is also indicated. Earth's energy budget (or Earth's energy balance) is the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a ...
Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things).
is Earth's average albedo, measured to be 0.3. [11] [12] is Earth's average surface temperature, measured as about 288 K as of year 2020 [13] is the effective emissivity of Earth's combined surface and atmosphere (including clouds). It is a quantity between 0 and 1 that is calculated from the equilibrium to be about 0.61.
A view of the Earth's ecosphere. An ecosphere is a planetary contained ecological system. In this global ecosystem, the various forms of energy and matter that constitute a given planet interact on a continual basis. The forces of the four Fundamental interactions cause the various forms of matter to settle into identifiable layers. These ...
The stratosphere is the second-lowest layer of Earth's atmosphere. It lies above the troposphere and is separated from it by the tropopause. This layer extends from the top of the troposphere at roughly 12 km (7.5 mi; 39,000 ft) above Earth's surface to the stratopause at an altitude of about 50 to 55 km (31 to 34 mi; 164,000 to 180,000 ft).
[3] [4] [5] The planet is idealized by the model as being functionally "layered" with regard to a sequence of simplified energy flows, but dimensionless (i.e. a zero-dimensional model) in terms of its mathematical space. [6] The layers include a surface with constant temperature T s and an atmospheric layer with constant temperature T a. For ...
Earth's tectonic evolution over time from a molten state at 4.5 Ga, [11] to a single-plate lithosphere, [24] to modern plate tectonics sometime between 3.2 Ga [25] and 1.0 Ga [26] Primordial heat energy comes from the potential energy released by collapsing a large amount of matter into a gravity well, and the kinetic energy of accreted matter.