Search results
Results from the WOW.Com Content Network
A still weaker example is the axiom of countable choice (AC ω or CC), which states that a choice function exists for any countable set of nonempty sets. These axioms are sufficient for many proofs in elementary mathematical analysis , and are consistent with some principles, such as the Lebesgue measurability of all sets of reals, that are ...
All theorems and corollaries are proven by exploring the implications of the axiomata and other theorems that have previously been developed. New terms are defined using the primitive terms and other derived definitions based on those primitive terms. In a deductive system, one can correctly use the term "proof", as applying to a theorem.
Using the axiom of choice, one can show that for any family S of sets | ⋃S | ≤ | S | × sup { |s| : s ∈ S} (A). [5] Moreover, by Tarski's theorem on choice, another equivalent of the axiom of choice, | X | n = | X | for all finite n (B). Let X be an infinite set and let F denote the set of all finite subsets of X. There is a natural ...
The mathematical statements discussed below are provably independent of ZFC (the canonical axiomatic set theory of contemporary mathematics, consisting of the Zermelo–Fraenkel axioms plus the axiom of choice), assuming that ZFC is consistent. A statement is independent of ZFC (sometimes phrased "undecidable in ZFC") if it can neither be ...
Variables may be of many types; real or integer numbers, Boolean values or strings, for example. The variables represent some properties of the system, for example, the measured system outputs often in the form of signals, timing data, counters, and event occurrence. The actual model is the set of functions that describe the relations between ...
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
The choice of the "shortest tree" relative to a not-so-short tree under any optimality criterion (smallest distance, fewest steps, or maximum likelihood) is always based on parsimony. [61] Francis Crick has commented on potential limitations of Occam's razor in biology. He advances the argument that because biological systems are the products ...
Jacobus van 't Hoff (1852–1911), an influential theoretical chemist and the first winner of the Nobel Prize in Chemistry.. Theoretical chemistry is the branch of chemistry which develops theoretical generalizations that are part of the theoretical arsenal of modern chemistry: for example, the concepts of chemical bonding, chemical reaction, valence, the surface of potential energy, molecular ...