enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quickselect - Wikipedia

    en.wikipedia.org/wiki/Quickselect

    In computer science, quickselect is a selection algorithm to find the kth smallest element in an unordered list, also known as the kth order statistic.Like the related quicksort sorting algorithm, it was developed by Tony Hoare, and thus is also known as Hoare's selection algorithm. [1]

  3. Median of medians - Wikipedia

    en.wikipedia.org/wiki/Median_of_medians

    In computer science, the median of medians is an approximate median selection algorithm, frequently used to supply a good pivot for an exact selection algorithm, most commonly quickselect, that selects the kth smallest element of an initially unsorted array. Median of medians finds an approximate median in linear time.

  4. Selection algorithm - Wikipedia

    en.wikipedia.org/wiki/Selection_algorithm

    As a baseline algorithm, selection of the th smallest value in a collection of values can be performed by the following two steps: . Sort the collection; If the output of the sorting algorithm is an array, retrieve its th element; otherwise, scan the sorted sequence to find the th element.

  5. Selection sort - Wikipedia

    en.wikipedia.org/wiki/Selection_sort

    In computer science, selection sort is an in-place comparison sorting algorithm.It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort.

  6. Order statistic - Wikipedia

    en.wikipedia.org/wiki/Order_statistic

    The problem of computing the kth smallest (or largest) element of a list is called the selection problem and is solved by a selection algorithm. Although this problem is difficult for very large lists, sophisticated selection algorithms have been created that can solve this problem in time proportional to the number of elements in the list ...

  7. Floyd–Rivest algorithm - Wikipedia

    en.wikipedia.org/wiki/Floyd–Rivest_algorithm

    The following pseudocode rearranges the elements between left and right, such that for some value k, where left ≤ k ≤ right, the kth element in the list will contain the (k − left + 1)th smallest value, with the ith element being less than or equal to the kth for all left ≤ i ≤ k and the jth element being larger or equal to for k ≤ j ≤ right:

  8. Min-max heap - Wikipedia

    en.wikipedia.org/wiki/Min-max_heap

    We assume in the next points that the root element is at the first level, i.e., 0. Example of Min-max heap. Each node in a min-max heap has a data member (usually called key) whose value is used to determine the order of the node in the min-max heap. The root element is the smallest element in the min-max heap.

  9. Range minimum query - Wikipedia

    en.wikipedia.org/wiki/Range_minimum_query

    Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …