enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Loop (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Loop_(graph_theory)

    In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same ...

  3. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    The graph attention network (GAT) was introduced by Petar Veličković et al. in 2018. [11] Graph attention network is a combination of a GNN and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data.

  4. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A drawing of a graph with 6 vertices and 7 edges.. In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects.

  5. Graphical model - Wikipedia

    en.wikipedia.org/wiki/Graphical_model

    A chain graph is a graph which may have both directed and undirected edges, but without any directed cycles (i.e. if we start at any vertex and move along the graph respecting the directions of any arrows, we cannot return to the vertex we started from if we have passed an arrow). Both directed acyclic graphs and undirected graphs are special ...

  6. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    Automatically learning the graph structure of a Bayesian network (BN) is a challenge pursued within machine learning. The basic idea goes back to a recovery algorithm developed by Rebane and Pearl [7] and rests on the distinction between the three possible patterns allowed in a 3-node DAG:

  7. Stochastic block model - Wikipedia

    en.wikipedia.org/wiki/Stochastic_block_model

    The goal of detection algorithms is simply to determine, given a sampled graph, whether the graph has latent community structure. More precisely, a graph might be generated, with some known prior probability, from a known stochastic block model, and otherwise from a similar Erdos-Renyi model. The algorithmic task is to correctly identify which ...

  8. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    In the mathematical theory of artificial neural networks, universal approximation theorems are theorems [1] [2] of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks ,, … from the family, such that according to some criterion.

  9. Configuration graph - Wikipedia

    en.wikipedia.org/wiki/Configuration_graph

    A configuration, also called an instantaneous description (ID), is a finite representation of the machine at a given time. For example, for a finite automata and a given input, the configuration will be the current state and the number of read letters, for a Turing machine it will be the state, the content of the tape and the position of the head.