enow.com Web Search

  1. Ad

    related to: derivative 4 step rule of differentiation worksheet 2 instructions

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  3. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let f {\displaystyle f} and g {\displaystyle g} be n {\displaystyle n} -times differentiable functions. The base case when n = 1 {\displaystyle n=1} claims that: ( f g ) ′ = f ′ g + f g ′ , {\displaystyle (fg)'=f'g+fg',} which is the usual product rule and is known ...

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Once the derivatives of a few simple functions are known, the derivatives of other functions are more easily computed using rules for obtaining derivatives of more complicated functions from simpler ones. This process of finding a derivative is known as differentiation. [28]

  5. Weak derivative - Wikipedia

    en.wikipedia.org/wiki/Weak_derivative

    Also, if u is differentiable in the conventional sense then its weak derivative is identical (in the sense given above) to its conventional (strong) derivative. Thus the weak derivative is a generalization of the strong one. Furthermore, the classical rules for derivatives of sums and products of functions also hold for the weak derivative.

  6. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  7. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    However, because integration is the inverse operation of differentiation, Lagrange's notation for higher order derivatives extends to integrals as well. Repeated integrals of f may be written as f ( − 1 ) ( x ) {\displaystyle f^{(-1)}(x)} for the first integral (this is easily confused with the inverse function f − 1 ( x ) {\displaystyle f ...

  8. Wirtinger derivatives - Wikipedia

    en.wikipedia.org/wiki/Wirtinger_derivatives

    In complex analysis of one and several complex variables, Wirtinger derivatives (sometimes also called Wirtinger operators [1]), named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives ...

  9. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...

  1. Ad

    related to: derivative 4 step rule of differentiation worksheet 2 instructions