Search results
Results from the WOW.Com Content Network
The Möbius function () is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. [ i ] [ ii ] [ 2 ] It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula .
In a fundamental paper on Möbius functions, Rota showed the importance of this theory in combinatorial mathematics and gave a deep treatment of it. He noted the relation between such topics as inclusion-exclusion, classical number theoretic Möbius inversion, coloring problems and flows in networks. Since then, under the strong influence of ...
The existence of the inverse Möbius transformation and its explicit formula are easily derived by the composition of the inverse functions of the simpler transformations. That is, define functions g 1 , g 2 , g 3 , g 4 such that each g i is the inverse of f i .
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.
A sequence of integers (,, …) satisfies Gauss congruence if / ()for every , where is the Möbius function.By Möbius inversion, this condition is equivalent to the existence of a sequence of integers (,, …
The Möbius strip is one of the most famous objects in mathematics. Discovered in 1858 by two German mathematicians—August Ferdinand Möbius and Johann Benedict Listing—the Möbius strip is a ...
As functions of , these are examples of Möbius transformations, which under composition of functions form the Mobius group PGL(2, C). The six transformations form a subgroup known as the anharmonic group, again isomorphic to S 3. They are the torsion elements (elliptic transforms) in PGL(2, C).
Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...