Search results
Results from the WOW.Com Content Network
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
Kirchhoff's integral theorem (sometimes referred to as the Fresnel–Kirchhoff integral theorem) [1] is a surface integral to obtain the value of the solution of the homogeneous scalar wave equation at an arbitrary point P in terms of the values of the solution and the solution's first-order derivative at all points on an arbitrary closed surface (on which the integration is performed) that ...
Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.
Figure 2 shows the same circuit from Figure 1 with the mesh currents labeled. Solving for mesh currents instead of directly applying Kirchhoff's current law and Kirchhoff's voltage law can greatly reduce the amount of calculation required. This is because there are fewer mesh currents than there are physical branch currents.
Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph
The principle was used by Gustav Kirchhoff in his derivation of his law of thermal radiation and by Max Planck in his analysis of his law of thermal radiation. For ray-tracing global illumination algorithms, incoming and outgoing light can be considered as reversals of each other, without affecting the bidirectional reflectance distribution ...
The early identification of self-similar solutions of the second kind can be found in problems of imploding shock waves (Guderley–Landau–Stanyukovich problem), analyzed by G. Guderley (1942) and Lev Landau and K. P. Stanyukovich (1944), [3] and propagation of shock waves by a short impulse, analysed by Carl Friedrich von Weizsäcker [4] and ...
[1] [2] [3] The second law of thermodynamics establishes the concept of entropy as a physical property of a thermodynamic system. It predicts whether processes are forbidden despite obeying the requirement of conservation of energy as expressed in the first law of thermodynamics and provides necessary criteria for spontaneous processes. For ...