enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Liénard–Wiechert potential - Wikipedia

    en.wikipedia.org/wiki/Liénard–Wiechert_potential

    The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The potential equations can be simplified using a procedure called gauge fixing. Since the potentials are only defined up to gauge equivalence, we are free to impose additional equations on the potentials, as long as for every pair of potentials there is a gauge equivalent pair that satisfies the additional equations (i.e. if the gauge fixing ...

  4. Gauge fixing - Wikipedia

    en.wikipedia.org/wiki/Gauge_fixing

    A particular choice of the scalar and vector potentials is a gauge (more precisely, gauge potential) and a scalar function ψ used to change the gauge is called a gauge function. [citation needed] The existence of arbitrary numbers of gauge functions ψ(r, t) corresponds to the U(1) gauge freedom of this theory. Gauge fixing can be done in many ...

  5. Retarded potential - Wikipedia

    en.wikipedia.org/wiki/Retarded_potential

    Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]

  6. Lorenz gauge condition - Wikipedia

    en.wikipedia.org/wiki/Lorenz_gauge_condition

    In electromagnetism, the Lorenz gauge condition or Lorenz gauge (after Ludvig Lorenz) is a partial gauge fixing of the electromagnetic vector potential by requiring = The name is frequently confused with Hendrik Lorentz , who has given his name to many concepts in this field. [ 1 ] (

  7. Gauge theory - Wikipedia

    en.wikipedia.org/wiki/Gauge_theory

    Quantum electrodynamics is an abelian gauge theory with the symmetry group U(1) and has one gauge field, the electromagnetic four-potential, with the photon being the gauge boson. The Standard Model is a non-abelian gauge theory with the symmetry group U(1) × SU(2) × SU(3) and has a total of twelve gauge bosons: the photon , three weak bosons ...

  8. Minimal coupling - Wikipedia

    en.wikipedia.org/wiki/Minimal_coupling

    In Cartesian coordinates, the Lagrangian of a non-relativistic classical particle in an electromagnetic field is (in SI Units): = ˙ + ˙ where q is the electric charge of the particle, φ is the electric scalar potential, and the A i, i = 1, 2, 3, are the components of the magnetic vector potential that may all explicitly depend on and .

  9. Velocity potential - Wikipedia

    en.wikipedia.org/wiki/Velocity_potential

    If ϕ is a velocity potential, then ϕ + f(t) is also a velocity potential for u, where f(t) is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable. The Laplacian of a velocity potential is equal to the divergence of the corresponding flow.