Search results
Results from the WOW.Com Content Network
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel , and a receiver.
The defining expression for entropy in the theory of information established by Claude E. Shannon in 1948 is of the form: where is the probability of the message taken from the message space M, and b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10, and the unit of entropy is shannon (or bit) for b = 2, nat ...
Definition. Given a discrete set of probabilities with the condition , and any real number, the Tsallis entropy is defined as. where is a real parameter sometimes called entropic-index and a positive constant. In the limit as , the usual Boltzmann–Gibbs entropy is recovered, namely.
e. Differential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy (a measure of average surprisal) of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just ...
In information theory, the Rényi entropy is a quantity that generalizes various notions of entropy, including Hartley entropy, Shannon entropy, collision entropy, and min-entropy. The Rényi entropy is named after Alfréd Rényi , who looked for the most general way to quantify information while preserving additivity for independent events.
The landmark event establishing the discipline of information theory and bringing it to immediate worldwide attention was the publication of Claude E. Shannon's classic paper "A Mathematical Theory of Communication" in the Bell System Technical Journal in July and October 1948.
The violet is the mutual information . In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons, nats, or hartleys. The entropy of conditioned on is written as .
A measure of disorder in the universe or of the unavailability of the energy in a system to do work. [7] Entropy and disorder also have associations with equilibrium. [8] Technically, entropy, from this perspective, is defined as a thermodynamic property which serves as a measure of how close a system is to equilibrium—that is, to perfect ...