Ad
related to: how to factor x^3 polynomialswyzant.com has been visited by 10K+ users in the past month
- Expert Tutors
Choose From 80,000 Vetted Tutors
w/ Millions Of Ratings and Reviews
- Personalized Sessions
Name Your Subject, Find Your Tutor.
Customized 1-On-1 Instruction.
- Find a Tutor
Find Affordable Tutors at Wyzant.
1-on-1 Sessions From $25/hr.
- Our Powerful Online Tool
Interactive Features & Video Chat
Make Learning Easy. Try It Free.
- Expert Tutors
Search results
Results from the WOW.Com Content Network
Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...
In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.
That lemma says that if the polynomial factors in Q[X], then it also factors in Z[X] as a product of primitive polynomials. Now any rational root p/q corresponds to a factor of degree 1 in Q[X] of the polynomial, and its primitive representative is then qx − p, assuming that p and q are coprime.
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).
The content of a polynomial p ∈ R[X], denoted "cont(p)", is the GCD of its coefficients. A polynomial q ∈ F[X] may be written = where p ∈ R[X] and c ∈ R: it suffices to take for c a multiple of all denominators of the coefficients of q (for example their product) and p = cq.
In polynomials with one indeterminate, the terms are usually ordered according to degree, either in "descending powers of x", with the term of largest degree first, or in "ascending powers of x". The polynomial 3x 2 − 5x + 4 is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2.
Ad
related to: how to factor x^3 polynomialswyzant.com has been visited by 10K+ users in the past month