enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more. This is accomplished by doing a convolution between the kernel and an image. Or more simply, when each pixel in the output image is a function of the nearby pixels (including itself) in the input image ...

  3. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    In digital image processing convolutional filtering plays an important role in many important algorithms in edge detection and related processes (see Kernel (image processing)) In optics, an out-of-focus photograph is a convolution of the sharp image with a lens function. The photographic term for this is bokeh. In image processing applications ...

  4. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  5. Sobel operator - Wikipedia

    en.wikipedia.org/wiki/Sobel_operator

    He defined the operators as neighborhood masks (i.e. correlation kernels), and therefore are mirrored from what described here as convolution kernels. He also assumed the vertical axis increasing upwards instead of downwards as is common in image processing nowadays, and hence the vertical kernel is flipped.

  6. Kernel - Wikipedia

    en.wikipedia.org/wiki/Kernel

    Kernel (image processing), a matrix used for image convolution; Compute kernel, in GPGPU programming; Kernel method, in machine learning; Kernelization, a technique for designing efficient algorithms Kernel, a routine that is executed in a vectorized loop, for example in general-purpose computing on graphics processing units

  7. Image derivative - Wikipedia

    en.wikipedia.org/wiki/Image_derivative

    Image derivatives can be computed by using small convolution filters of size 2 × 2 or 3 × 3, such as the Laplacian, Sobel, Roberts and Prewitt operators. [1] However, a larger mask will generally give a better approximation of the derivative and examples of such filters are Gaussian derivatives [ 2 ] and Gabor filters . [ 3 ]

  8. Unsharp masking - Wikipedia

    en.wikipedia.org/wiki/Unsharp_masking

    For image processing, deconvolution is the process of approximately inverting the process that caused an image to be blurred. Specifically, unsharp masking is a simple linear image operation—a convolution by a kernel that is the Dirac delta minus a gaussian blur kernel.

  9. Difference of Gaussians - Wikipedia

    en.wikipedia.org/wiki/Difference_of_Gaussians

    A major drawback to application of the algorithm is an inherent reduction in overall image contrast produced by the operation. [1] When utilized for image enhancement, the difference of Gaussians algorithm is typically applied when the size ratio of kernel (2) to kernel (1) is 4:1 or 5:1.