enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.

  3. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The function u above represents temperature of a body. Alternatively, it is sometimes convenient to change units and represent u as the heat density of a medium. Since heat density is proportional to temperature in a homogeneous medium, the heat equation is still obeyed in the new units.

  4. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    Heat transfer rate, or heat flow per unit time, is denoted by ˙, but it is not a time derivative of a function of state (which can also be written with the dot notation) since heat is not a function of state. [5] Heat flux is defined as rate of heat transfer per unit cross-sectional area (watts per square metre).

  5. Green's function number - Wikipedia

    en.wikipedia.org/wiki/Green's_function_number

    As another example, number R10 denotes the Green's function in a large body containing a cylindrical void (a < r < ) with a type 1 (Dirichlet) boundary condition at r = a. Again letter R denotes the cylindrical coordinate system, number 1 denotes the type 1 boundary at r = a , and number 0 denotes the type zero boundary (boundedness) at large ...

  6. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure. As a simple example, consider a system composed of a number of k different types of particles and has the volume as its only external variable. The ...

  7. Thermodynamic modelling - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_modelling

    The easiest thermodynamic models, also known as equations of state, can come from simple correlations that relate different thermodynamic properties using a linear or second-order polynomial function of temperature and pressures. They are generally fitted using experimental data available for that specific properties.

  8. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    The grand canonical partition function applies to a grand canonical ensemble, in which the system can exchange both heat and particles with the environment, at fixed temperature, volume, and chemical potential. Other types of partition functions can be defined for different circumstances; see partition function (mathematics) for

  9. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Here, U is internal energy, T is absolute temperature, S is entropy, P is pressure, and V is volume. This is only one expression of the fundamental thermodynamic relation. It may be expressed in other ways, using different variables (e.g. using thermodynamic potentials). For example, the fundamental relation may be expressed in terms of the ...