Search results
Results from the WOW.Com Content Network
Some of the important wave processes are refraction, diffraction, reflection, wave breaking, wave–current interaction, friction, wave growth due to the wind, and wave shoaling. In the absence of the other effects, wave shoaling is the change of wave height that occurs solely due to changes in mean water depth – without alterations in wave ...
The shoaling coefficient K S depends on h/L 0, where L 0 is the wavelength in deep water: L 0 = g/(2π) T 2, with T the wave period and g the gravity of Earth. The blue line is the shoaling coefficient according to Green's law for waves in shallow water, i.e. when the water depth is less than 1/20 times the local wavelength L = T √(gh).
Stokes drift – Average velocity of a fluid parcel in a gravity wave; Undertow (water waves) – Return flow below nearshore water waves. Ursell number – Dimensionless number indicating the nonlinearity of long surface gravity waves on a fluid layer. Wave shoaling – Effect by which surface waves entering shallower water change in wave height
Notice the flat troughs and sharp crests, due to the wave nonlinearity. This case (drawn on scale) shows a wave with the wavelength equal to 39.1 m, the wave height is 1.8 m (i.e. the difference between crest and trough elevation), and the mean water depth is 5 m, while the gravitational acceleration is 9.81 m/s 2.
In fluid dynamics, wave setup is the increase in mean water level due to the presence of breaking waves. Similarly, wave setdown is a wave-induced decrease of the mean water level before the waves break (during the shoaling process). For short, the whole phenomenon is often denoted as wave setup, including both increase and decrease of mean ...
Shallow-water equations can be used to model Rossby and Kelvin waves in the atmosphere, rivers, lakes and oceans as well as gravity waves in a smaller domain (e.g. surface waves in a bath). In order for shallow-water equations to be valid, the wavelength of the phenomenon they are supposed to model has to be much larger than the depth of the ...
At the same time, but independently from Miles, Owen M. Phillips [10] (1957) developed his theory for the generation of waves based on the resonance between a fluctuating pressure field and surface waves. The main idea behind Phillips' theory is that this resonance mechanism causes the waves to grow when the length of the waves matches the ...
Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.