Search results
Results from the WOW.Com Content Network
Homologous recombination is widely used by cells to accurately repair harmful DNA breaks that occur on both strands of DNA, known as double-strand breaks (DSB), in a process called homologous recombinational repair (HRR). [1] Homologous recombination also produces new combinations of DNA sequences during meiosis, the process by which eukaryotes ...
Homology-directed repair (HDR) is a mechanism in cells to repair double-strand DNA lesions. [1] The most common form of HDR is homologous recombination. The HDR mechanism can only be used by the cell when there is a homologous piece of DNA present in the nucleus, mostly in G2 and S phase of the cell cycle. Other examples of homology-directed ...
DSB repair is an important cellular process, as the accumulation of unrepaired DSB could lead to chromosomal rearrangements, tumorigenesis or even cell death. [1] In human cells, there are two main DSB repair mechanisms: Homologous recombination (HR) and non-homologous end joining (NHEJ).
Cells are able to accurately repair DNA double-strand breaks using a process called homologous recombination. By this process DNA sequence information that is lost because of the breakage can be recovered from a second homologous DNA molecule. Homologous recombinational repair is important for removing DNA damage both during mitosis and meiosis.
The MRN complex (MRX complex in yeast) is a protein complex consisting of Mre11, Rad50 and Nbs1 (also known as Nibrin [1] in humans and as Xrs2 in yeast). In eukaryotes, the MRN/X complex plays an important role in the initial processing of double-strand DNA breaks prior to repair by homologous recombination or non-homologous end joining.
Some DNA viruses encode a recombinase that facilitates homologous recombination. A well-studied example is the UvsX recombinase encoded by bacteriophage T4. [10] UvsX is homologous to bacterial RecA. UvsX, like RecA, can facilitate the assimilation of linear single-stranded DNA into an homologous DNA duplex to produce a D-loop.
Most recombination occurs naturally and can be classified into two types: (1) interchromosomal recombination, occurring through independent assortment of alleles whose loci are on different but homologous chromosomes (random orientation of pairs of homologous chromosomes in meiosis I); & (2) intrachromosomal recombination, occurring through ...
Most recombination events appear to be the SDSA type. Synthesis-dependent strand annealing (SDSA) is a major mechanism of homology-directed repair of DNA double-strand breaks (DSBs). Although many of the features of SDSA were first suggested in 1976, [1] the double-Holliday junction model proposed in 1983 [2] was favored by