Search results
Results from the WOW.Com Content Network
The boat and twist-boat conformations, as said, lie along a continuum of zero angle strain. If there are substituents that allow the different carbon atoms to be distinguished, then this continuum is like a circle with six boat conformations and six twist-boat conformations between them, three "right-handed" and three "left-handed".
English: Cyclooctane twist boat-chair conformation. Source for name and structure: PW Pakes, TC Rounds, HL Strauss (1981). Conformations of cyclooctane and some related oxocanes. The Journal of Physical Chemistry. 85 (17): 2469–2475.
The chair and twist-boat are energy minima and are therefore conformers, while the half-chair and the boat are transition states and represent energy maxima. The idea that the chair conformation is the most stable structure for cyclohexane was first proposed as early as 1890 by Hermann Sachse, but only gained widespread acceptance much later.
There is a peak/local maximum at the boat conformation (C), and there are valleys/local minimums at the twist-boat conformations (B). In addition, cyclohexane conformations can be used to indicate if the molecule has any 1,3 diaxial-interactions which are steric interactions between axial substituents on the 1,3, and 5 carbons. [8]
The boat conformation (C, 6.9 kcal/mol, C 2v symmetry) is a local energy maximum for the interconversion of the two mirror image twist-boat conformers, the second of which is converted to the other chair confirmation through another half-chair. At the end of the process, all axial positions have become equatorial and vice versa.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Hendrickson noted that "cyclooctane is unquestionably the conformationally most complex cycloalkane owing to the existence of many conformers of comparable energy". The boat-chair conformation (below) is the most stable form. [4] This conformation was confirmed by Allinger and co-workers. [5] The crown conformation (below) [6] is
The three eclipsed conformations with dihedral angles of 0°, 120°, and 240° are transition states between conformers. [6] Note that the two eclipsed conformations have different energies: at 0° the two methyl groups are eclipsed, resulting in higher energy (≈ 5 kcal/mol) than at 120°, where the methyl groups are eclipsed with hydrogens ...