Search results
Results from the WOW.Com Content Network
Refactoring is usually motivated by noticing a code smell. [2] For example, the method at hand may be very long, or it may be a near duplicate of another nearby method. Once recognized, such problems can be addressed by refactoring the source code, or transforming it into a new form that behaves the same as before but that no longer "smells".
[1] Object-oriented decomposition breaks a large system down into progressively smaller classes or objects that are responsible for part of the problem domain. According to Booch, algorithmic decomposition is a necessary part of object-oriented analysis and design, but object-oriented systems start with and emphasize decomposition into objects. [2]
This beckons as another opportunity for refactoring to be used in order to improve the quality of the code. Refactoring to eliminate data clumps does not need to be done by hand. Many modern fully featured IDEs have functionality (often labeled as "Extract Class") that is capable of performing this refactoring automatically or nearly so.
Test-driven development (TDD) is a way of writing code that involves writing an automated unit-level test case that fails, then writing just enough code to make the test pass, then refactoring both the test code and the production code, then repeating with another new test case.
This facilitates code refactoring, for example allowing the author of the class to change how objects of that class represent their data internally without changing any external code (as long as "public" method calls work the same way). It also encourages programmers to put all the code that is concerned with a certain set of data in the same ...
It states that two instances of similar code do not require refactoring, but when similar code is used three times, it should be extracted into a new procedure. The rule was popularised by Martin Fowler in Refactoring [1] and attributed to Don Roberts. Duplication is considered a bad practice in programming because it makes the code harder to ...
The factory method design pattern solves problems such as: How can an object's subclasses redefine its subsequent and distinct implementation? The pattern involves creation of a factory method within the superclass that defers the object's creation to a subclass's factory method.
An execution model covers things such as what is an indivisible unit of work, and what are the constraints on the order in which those units of work may take place. For example, the addition operation is an indivisible unit of work in many languages, and in sequential languages such units of work are constrained to take place one after the other.