enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Half-life is constant over the lifetime of an exponentially decaying quantity, and it is a characteristic unit for the exponential decay equation. The accompanying table shows the reduction of a quantity as a function of the number of half-lives elapsed.

  3. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    This is the form of the equation that is most commonly used to describe exponential decay. Any one of decay constant, mean lifetime, or half-life is sufficient to characterise the decay. The notation λ for the decay constant is a remnant of the usual notation for an eigenvalue.

  4. Effective half-life - Wikipedia

    en.wikipedia.org/wiki/Effective_half-life

    With the decay constant it is possible to calculate the effective half-life using the formula: t 1 / 2 = ln ⁡ ( 2 ) λ e {\displaystyle t_{1/2}={\frac {\ln(2)}{\lambda _{e}}}} The biological decay constant is often approximated as it is more difficult to accurately determine than the physical decay constant.

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    the half-life is related to the decay constant as follows: set N = N 0 /2 and t = T 1/2 to obtain / = ⁡ = ⁡ This relationship between the half-life and the decay constant shows that highly radioactive substances are quickly spent, while those that radiate weakly endure longer.

  6. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    In radioactive decay the time constant is related to the decay constant (λ), and it represents both the mean lifetime of a decaying system (such as an atom) before it decays, or the time it takes for all but 36.8% of the atoms to decay. For this reason, the time constant is longer than the half-life, which is the time for only 50% of the atoms ...

  7. Geiger–Nuttall law - Wikipedia

    en.wikipedia.org/wiki/Geiger–Nuttall_law

    In practice, this means that alpha particles from all alpha-emitting isotopes across many orders of magnitude of difference in half-life, all nevertheless have about the same decay energy. Formulated in 1911 by Hans Geiger and John Mitchell Nuttall as a relation between the decay constant and the range of alpha particles in air, [ 1 ] in its ...

  8. Biological half-life - Wikipedia

    en.wikipedia.org/wiki/Biological_half-life

    Biological half-life ... where k is the reaction rate constant. Such a decay rate arises from a first ... and the relationship is described by the following equation:

  9. Half time (physics) - Wikipedia

    en.wikipedia.org/wiki/Half_time_(physics)

    The voltage (v) on the capacitor (C) changes with time as the capacitor is charged or discharged via the resistor (R) In electronics, when a capacitor is charged or discharged via a resistor, the voltage on the capacitor follows the above formula, with the half time approximately equal to 0.69 times the time constant, which is equal to the product of the resistance and the capacitance.