enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    An elastic modulus (also known as modulus of elasticity (MOE)) is a quantity that describes an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it.

  3. Deformation index - Wikipedia

    en.wikipedia.org/wiki/Deformation_index

    Futamura's deformation index can be defined as follows. is the parameter whose value is controlled (ie held constant). is Young's modulus of linear elasticity. is the strain. is the stress. . = =. Particular choices of yield particular modes of control and determine the units of . For =, we get strain control: = =. For =, we get energy control: = = =. For =, we get stress control ...

  4. Compatibility (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Compatibility_(mechanics)

    For two-dimensional, plane strain problems the strain-displacement relations are = ; = [+] ; = Repeated differentiation of these relations, in order to remove the displacements and , gives us the two-dimensional compatibility condition for strains

  5. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    The first stage is the linear elastic region. The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation.

  6. Stress functions - Wikipedia

    en.wikipedia.org/wiki/Stress_functions

    In linear elasticity, the equations describing the deformation of an elastic body subject only to surface forces (or body forces that could be expressed as potentials) on the boundary are (using index notation) the equilibrium equation: , =

  7. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  8. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    This is known as perfect elasticity, in which a given object will return to its original shape no matter how strongly it is deformed. This is an ideal concept only; most materials which possess elasticity in practice remain purely elastic only up to very small deformations, after which plastic (permanent) deformation occurs.

  9. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.

  1. Related searches definition of elastic deformation in physics class 12 index calculator download

    elastic deformation definitionelastic modulus wikipedia
    how to calculate elastic module