Search results
Results from the WOW.Com Content Network
Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...
The nines' complement of a decimal digit is the number that must be added to it to produce 9; the nines' complement of 3 is 6, the nines' complement of 7 is 2, and so on, see table. To form the nines' complement of a larger number, each digit is replaced by its nines' complement. Consider the following subtraction problem:
In the base −2 representation, a signed number is represented using a number system with base −2. In conventional binary number systems, the base, or radix, is 2; thus the rightmost bit represents 2 0, the next bit represents 2 1, the next bit 2 2, and so on. However, a binary number system with base −2 is also possible.
The ones' complement of a binary number is the value obtained by inverting (flipping) all the bits in the binary representation of the number. The name "ones' complement" [1] refers to the fact that such an inverted value, if added to the original, would always produce an "all ones" number (the term "complement" refers to such pairs of mutually additive inverse numbers, here in respect to a ...
A left arithmetic shift by n is equivalent to multiplying by 2 n (provided the value does not overflow), while a right arithmetic shift by n of a two's complement value is equivalent to taking the floor of division by 2 n. If the binary number is treated as ones' complement, then the same right-shift operation results in division by 2 n and ...
The 9's complement of any one-digit decimal number d is 9-d. So the 9's complement of 4 is 5 and the 9's complement of 9 is 0. Similarly, the 11's complement of 3 is 8. In a decimal machine with n dials the 9's complement of a number A is: = and therefore the 9's complement of (A-B) is:
If the source of the operation is an unsigned number, then zero extension is usually the correct way to move it to a larger field while preserving its numeric value, while sign extension is correct for signed numbers. In the x86 and x64 instruction sets, the movzx instruction ("move with zero extension") performs this function.
This page was last edited on 9 September 2006, at 16:49 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.