Search results
Results from the WOW.Com Content Network
When the single 2D image is viewed with proper eye convergence, it causes the brain to fuse different patterns perceived by the two eyes into a virtual 3D image without, hidden within the 2D image, the aid of any optical equipment. SIS images are created using a repeating pattern. [18] [29] Programs for their creation include Mathematica. [30] [31]
The disparity of features between two stereo images are usually computed as a shift to the left of an image feature when viewed in the right image. [3] For example, a single point that appears at the x coordinate t (measured in pixels ) in the left image may be present at the x coordinate t − 3 in the right image.
The convergence will stretch the extraocular muscles – the receptors for this are muscle spindles. As happens with the monocular accommodation cue, kinesthetic sensations from these extraocular muscles also help in distance and depth perception. The angle of convergence is smaller when the eye is fixating on objects which are far away.
The correspondence problem questions how the visual system determines what features or objects contained within the two retinal images come from the same real world objects. [1] For example, when looking at a picture of a tree, the visual system must determine that the two retinal images of the tree come from the same actual object in space.
The visual system is the physiological basis of visual perception (the ability to detect and process light).The system detects, transduces and interprets information concerning light within the visible range to construct an image and build a mental model of the surrounding environment.
Stereoscopy creates the impression of three-dimensional depth from a pair of two-dimensional images. [5] Human vision, including the perception of depth, is a complex process, which only begins with the acquisition of visual information taken in through the eyes; much processing ensues within the brain, as it strives to make sense of the raw information.
Light from a single point of a distant object and light from a single point of a near object being brought to a focus. The accommodation reflex (or accommodation-convergence reflex) is a reflex action of the eye, in response to focusing on a near object, then looking at a distant object (and vice versa), comprising coordinated changes in vergence, lens shape (accommodation) and pupil size.
Both of these mechanisms are neurally linked forming the accommodation-convergence reflex [1] of eyes. One can distinguish vergence distance — a distance of a point towards which both eyes are converging, and an accommodation distance — a distance of a region in space towards which the focus or refractive power of the ...