Search results
Results from the WOW.Com Content Network
In heterogeneous electron transfer, an electron moves between a chemical species present in solution and the surface of a solid such as a semi-conducting material or an electrode. Theories addressing heterogeneous electron transfer have applications in electrochemistry and the design of solar cells.
Inward moving protons must not only power rotation of ATP synthase, but may also be used in the transport of products and precursors. Given the net charge differences between ATP and ADP, the enzyme ATP–ADP translocase dissipates the charge equivalent of one hydrogen ion from the gradient when moving ATP (outward) and ADP (inward) across the ...
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
This theory has largely been disproven by FT electron spectroscopy experiments that show electron absorption and transfer with an efficiency of above 99%, [61] which cannot be explained by classical mechanical models. Instead, as early as 1938, scientists theorized that quantum coherence was the mechanism for excitation-energy transfer.
In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule, the reductant, also called the electron donor, to another, the oxidant, also called the electron acceptor. This group of enzymes usually utilizes NADP+ or NAD+ as cofactors.
In theoretical chemistry, Marcus theory is a theory originally developed by Rudolph A. Marcus, starting in 1956, to explain the rates of electron transfer reactions – the rate at which an electron can move or jump from one chemical species (called the electron donor) to another (called the electron acceptor). [1]
The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.
Electrons travel through the cytochrome b6f complex to photosystem I via an electron transport chain within the thylakoid membrane. Energy from PSI drives this process [citation needed] and is harnessed (the whole process is termed chemiosmosis) to pump protons across the membrane, into the thylakoid lumen space from the chloroplast stroma.