Search results
Results from the WOW.Com Content Network
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
If the solvent is a gas, only gases (non-condensable) or vapors (condensable) are dissolved under a given set of conditions. An example of a gaseous solution is air (oxygen and other gases dissolved in nitrogen). Since interactions between gaseous molecules play almost no role, non-condensable gases form rather trivial solutions.
Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Water vapor is transparent, like most constituents of the atmosphere. [1] Under typical atmospheric conditions ...
Condensation forming in the low pressure zone above the wing of an aircraft due to adiabatic expansion. Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle. [1] It can also be defined as the change in the state of water ...
Oxygen and Nitrogen are two non-condensable gases that are removed by deaeration. Henry's law describes the relationship of dissolved gases and partial pressures. Thermal deaeration relies on the principle that the solubility of a gas in water decreases as the water temperature increases and approaches its boiling point. In the deaerator, water ...
Distillation, also classical distillation, is the process of separating the component substances of a liquid mixture of two or more chemically discrete substances; the separation process is realized by way of the selective boiling of the mixture and the condensation of the vapors in a still.
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
is the total pressure (vapor pressure + non-condensable gas) A common example is the production of the medicine Entonox, a high-pressure mixture of nitrous oxide and oxygen. The ability to combine N 2 O and O 2 at high pressure while remaining in the gaseous form is due to the Poynting effect.