Search results
Results from the WOW.Com Content Network
Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. [1] It is named after Étienne Bézout.
Here the greatest common divisor of 0 and 0 is taken to be 0.The integers x and y are called Bézout coefficients for (a, b); they are not unique.A pair of Bézout coefficients can be computed by the extended Euclidean algorithm, and this pair is, in the case of integers one of the two pairs such that | x | ≤ | b/d | and | y | ≤ | a/d |; equality occurs only if one of a and b is a multiple ...
For stating the generalization of Bézout's theorem, it is convenient to introduce new indeterminates , …,, and to represent the multi-degree , …, by the linear form = + +. In the following, "multi-degree" will refer to this linear form rather than to the sequence of degrees.
In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product of and a polynomial in of degree one less than the degree of .
Theorem - If a projective hypersurface of degree d does not contain any irreducible component of an algebraic set of degree δ, then the degree of their intersection is dδ. The usual Bézout's theorem is easily deduced by starting from a hypersurface, and intersecting it with n − 1 other hypersurfaces, one after the other.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
A generalization of Bézout's theorem asserts that, if an intersection of n projective hypersurfaces has codimension n, then the degree of the intersection is the product of the degrees of the hypersurfaces. The degree of a projective variety is the evaluation at 1 of the numerator of the Hilbert series of its coordinate ring.
An integral domain where a gcd exists for any two elements is called a GCD domain and thus Bézout domains are GCD domains. In particular, in a Bézout domain, irreducibles are prime (but as the algebraic integer example shows, they need not exist). For a Bézout domain R, the following conditions are all equivalent: R is a principal ideal domain.