Search results
Results from the WOW.Com Content Network
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is expressed in moles and multiplied by the molar mass of each to give the mass of each reactant per mole of reaction. The mass ratios can be calculated by dividing each by the total in the whole reaction.
FW = Formula weight of the oxidizable compound in the sample, RMO = Ratio of the # of moles of oxygen to # of moles of oxidizable compound in their reaction to CO 2, water, and ammonia. For example, if a sample has 500 Wppm (Weight Parts per Million) of phenol: C 6 H 5 OH + 7O 2 → 6CO 2 + 3H 2 O COD = (500/94)·7·16*2 = 1192 Wppm
The rate of the overall reaction depends on the slowest step, so the overall reaction will be first order when the reaction of the energized reactant is slower than the collision step. The half-life is independent of the starting concentration and is given by t 1 / 2 = ln ( 2 ) k {\textstyle t_{1/2}={\frac {\ln {(2)}}{k}}} .
The combustion of a stoichiometric mixture of fuel and oxidizer (e.g. two moles of hydrogen and one mole of oxygen) in a steel container at 25 °C (77 °F) is initiated by an ignition device and the reactions allowed to complete. When hydrogen and oxygen react during combustion, water vapor is produced.
This formula leads to the Nernst equation when applied to the oxidation-reduction reaction which generates the voltage of a voltaic cell. Analogously, the relation between the change in reaction enthalpy and enthalpy can be defined. For example, [8]
Since the reaction rate determines the reaction timescale, the exact formula for the Damköhler number varies according to the rate law equation. For a general chemical reaction A → B following the Power law kinetics of n-th order , the Damköhler number for a convective flow system is defined as:
Carbon dioxide is the lasing medium in a carbon-dioxide laser, which is one of the earliest type of lasers. Carbon dioxide can be used as a means of controlling the pH of swimming pools, [139] by continuously adding gas to the water, thus keeping the pH from rising. Among the advantages of this is the avoidance of handling (more hazardous) acids.