Search results
Results from the WOW.Com Content Network
Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
In set theory, any two sets are defined to be equal if they have all the same members. This is called the Axiom of extensionality. Usually set theory is defined within logic, and therefore uses the equality described above, however, if a logic system does not have equality, it is possible to define equality within set theory.
The critical path method (CPM), or critical path analysis (CPA), is an algorithm for scheduling a set of project activities. [1] A critical path is determined by identifying the longest stretch of dependent activities and measuring the time [ 2 ] required to complete them from start to finish.
In set theory, the axiom of extensionality states that two sets are equal if and only if they contain the same elements. In mathematics formalized in set theory, it is common to identify relations—and, most importantly, functions —with their extension as stated above, so that it is impossible for two relations or functions with the same ...
This article covers the historical timeline of project management. There is a general understanding that the history of modern project management started around 1950. Until 1900, projects were generally managed by creative architects and engineers themselves, among those, for example, Christopher Wren , Thomas Telford and Isambard Kingdom Brunel .
Define the two measures on the real line as = [,] () = [,] for all Borel sets. Then and are equivalent, since all sets outside of [,] have and measure zero, and a set inside [,] is a -null set or a -null set exactly when it is a null set with respect to Lebesgue measure.